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1. INTRODUCTIOX 

In a number of algorithms for finding eigenvalues of a matrix A,, the 

latter is reduced by an iterative sequence of similarity transformations 

to almost diagonal form. When A, has a multiple eigenvalue this is true 

of all the transforms (assuming exact computation). We are interested 

then in the nature of almost diagonal matrices with multiple eigenvalues. 

It turns out that such matrices have special characteristics which are of 

considerable interest as regards the convergence of iterative procedures 

for reducing a matrix to diagonal form. 

2. THE HERMITIAN CASE 

We first consider hermitian matrices with multiple eigenvalues. Let 

A be hermitian with eigenvalues Ai, Ai, . . . , A,, Ar+l, ;l,+2, . . . , An the root 

A, being precisely of multiplicity Y. (A may have other multiple eigenvalues 

but this will not affect the argument.) Let S be defined by the relation 

and let 

A=D+E, (‘3) 
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where D is the diagonal of A. Suppose we have 

ilE;lF = E < 6 (3) 

where F denotes the Frobenius norm (C 2 letjj2)1/2. When E is small 

A may be regarded as almost diagonal. By the Wielandt-Hoffman theorem 

[5] the li and aii may be ordered so that 

2 (APi - ai;) < &2. (4) 

Let us permute the rows and columns of A similarly so that the aii asso- 

ciated with the A, eigenvalues are the first Y. Without loss of generality 

we can assume this was true originally and with appropriate numbering 

of the remaining n - Y eigenvalues inequality (4) becomes 

We write 

F G 
A=GTH’ 

i 1 (6) 

where F is an Y x Y matrix. 

If the eigenvalues of H are I:+,, . . . , An’, then since the off-diagonal 

elements of H are a subset of those of E, we have by the Wielandt-Hoffman 

theorem [5] with appropriate numbering of the Ai’ 

Hence 

and 

I&’ - & = I& - aii + u,i - ilil 

GE+&<28 

(7) 

(8) 

Linear Algebra and Its Applications 1, l-12 (1968) 
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The matrix H - Ail is therefore nonsingular, i.e., it is of rank n - Y. 

Now since A has 1, as a r-fold root it, too, is of rank n - Y. We shall show 

that this means that F is especially related to G and H. We partition 

A - Ai1 in the form 

F - ;i,I G 
A - alI = G7 

H - &I 

If we premultiply A - iliT by 

I - G(H - AlI)-’ 

0 I I ) 

its rank is unaltered and hence the derived matrix 

F - iill - G(H - AlI)-‘Gr I$ 

GT H - AlI 

(10) 

(11) 

(1’2) 

is also of rank n - r. Since H - I,I is already of rank n - Y this can 

be true only if 

i.e., 

F - il,I - G(H - il,I)plGT = 8, (13) 

F = 1,I + G(H - ;i,I)p’G?‘ = ,?,I + M (say). (14) 

Now the elements of G are a subset of those of E and hence 

while 

(H - &I)-’ = R diag(A,’ - A,)-iRH, (16) 

where R is unitary. Hence from the unitary invariance of the Frobenius 

norm and from (9) and (15) 

(17) 

We see then that diagonal elements of F differ from A, by quantities 

bounded by ~~16 and its off-diagonal elements are bounded by e2/6. 



W’hen E < b this means that the largest off-diagonal element of A is 

never found in F, the matrix with the diagonal elements “associated” 

with the multiple root 1,. This has important consequences in connection 

with the classical Jacobi method [6, 10, 151 for diagonalizing hermitian 

matrices. At each stage in the reduction the largest off-diagonal element in 

the current matrix is annihilated but the theorem shows that after a 

certain stage such an off-diagonal element is never “associated” with two 

elements tending to the same multiple root. 

This simple observation removes a difficulty in demonstrating that 

the classical Jacobi method is always ultimately quadratically convergent 

[7, 10, 11, 15). A similar remark applies to the serial Jacobi method 

if a threshold strategy is used [9]. If at any stage the element which is 

annihilated is chosen to be one which is not small compared with the current 

norm of off-diagonal elements then this ensures that from a certain stage 

the annihilated element will not be associated with two diagonal elements 

tending to the same multiple root. 

3. PATHOLOGICALLY CLOSE IiOOTS 

In practice when a transformation is made on a matrix having multiple 

roots, the transformed matrix merely has very close roots because of 

rounding errors. In discussing the convergence of the Jacobi method 

the quantity mini& -- 2; is of great importance and the presence of very 

close roots would appear to be serious. We now show that this is not so. 

Suppose the roots of A are 

a,,a, ,...) a,; I.,, ,,..., a,,, (W 

where 

ii = a + Ei, i- l,...,v, (19) 

and the ei are very small. The first Y roots are therefore pathologically 

close. Define D and E as in (Z), but 6 by the relation 

and assume that 

(20) 



Now A may be expressed in the form 

A = RD,RH, (22) 

where D, = diag(Q and D, can be separated into D, and D, where 

D, = diag(2, A, . . ., 1, a,,,, . . . , An), (23) 

D, = diag(s,, F~, . . , E,, 0, . . , 0). (24) 

Hence 

A =: K(L), + D,)RH = RD,RH + RD,RH = B + C (say). (25) 

The matrix H has A as an r-fold root and to apply the result of the previous 

section we require only a bound for the Frobenius norm of its off-diagonal 

elements. Since B = A - C such a bound is given by 

/JElI,+ IICj!F= llE~I~_l- (~E~~)~~~==.z<~. 

The Frobenius norm of the off-diagonal elements of B “associated” with 

the multiple root is therefore bounded by ?/6 and hence that of the 

corresponding elements of A is bounded by &Z/C? + (2 E~~)~“. 

Suppose for example a matrix A has the roots 

and 

I - “(W’“), 1 - 10-10, 1, 4, 5 

IIEl,fl + 211”(1()-10) E 10-5. 

The off-diagonal elements of A associated with the close roots will then 

have a Frobenius norm bounded b\ 

and therefore they will all be far smaller than the largest off-diagonal 

element of A. Hence at such a stage in the classical Jacobi method or 

the threshold serial Jacobi method with a matrix having the root distribu- 

tion above, the current rotation will not be in a plane associated with 

the close roots. In fact, with the above example one sweep of the threshold 

serial Jacobi method will reduce the norm of off-diagonal elements from 

10M5 to 10-lo. Provided we do not wish to reduce the norm below this 

level the presence of the close roots has no adverse influence. (In fact, it 

is beneficial since it ensures that the main weight in the off-diagonal 

positions is concentrated on fewer elements.) 
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4. NONHERhlITIAX MATRICES 

The above proofs may give the impression that the result above is 

associated specifically with hermitian matrices. In fact a closely related 

result is true for any diagonalizable matrix having an r-fold root. 

Again let A have the roots il,, . . ., Al, Ar+l, . . ., I,. Let 

d = D -t E (D diagonal), (26) 

iiEl!,=E<6. (28) 

Suppose the Ai (i=r+l,..., n) include a root ;1, of multiplicity s so 

that A - &I is of rank n - s; then by a theorem due to Fan and Hoffman 

[2]* there are at least s indices i for which 

the last two inequalities following from (28). This means that there 

are at least s of the a,, lying in the disk with center 1, and radius e. 

At the moment it appears possible that there may be more than s; 

if so let us associate the first s qualifying a,, with $. The aCi associated 

with A, and L, (k, 1 > Y, L, # 2,) must be different since the disks with 

centers L, and 1, are disjoint, from (27) and (28). Hence we have associated 

precisely n - Y diagonal elements with il, ,_i, . . . , ii,. Now permute rows 

and columns of A similarly so that these n - Y diagonal elements are in 

the southeast corner. We can assume that A was in this form originally. 

As in the symmetric case, A - A,1 is of rank +z - Y and partitioning 

A - &I in the form 

G 

H - il,I I 
we have 

I; - l,Z - G(H - ,?,I)-‘K = 0, (31) 

* I would like to thank Dr. B. Levinger of Case Institute for drawing my attention 

to this result while we were both enjoying the hospitality of :\pplied Mathematics 

Division, *Argonne Xatlonal Laboratory. 



ALMOST DIAGONAL MATRICES 

provided H - A,1 is nonsingular. Now 

H -~ L,I == diag(aii - Al) +- L = D, + L (say), (34 

where L is the matrix of off-diagonal elements of H. (These elements are 

a subset of those of E.) Since 

laiz - a,1 2 /Ai - A,/ - (aii - A,( 

> 2s (i=r+l,...,n), (33) 

D, is nonsingular and 

H - &I = D, j I f D,-lL]. (34) 

Now 

and hence 

1 
z -. 

i) 

(35) 

(36) 

Equation (31) therefore gives 

F = A,1 + G(H - ;2,1)-1K = R,I + M (say), 

where 

(37) 
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This now shows that precisely n - Y of the ajj were associated with the 

;li (i=r+- l,..., n) and the remaining r diagonal elements are all in 

a disk of radius .s2/6 centered on 1,. Again off-diagonal elements “asso- 

ciated” with the multiple eigenvalue are bounded by c2/6 and are therefore 

well below the level of the largest off-diagonal elements when E << d. 

The result is at first sight surprising since the condition of the eigenvalzbe 

problem of A seems not to be involved. Indeed a result may be proved 

which is only marginally weaker even when A is defective (though not as 

far as ii, is concerned). In this respect it is the hypothesis lIEllm < E 
which is deceptive. If B has an ill-conditioned eigenvalue problem then, 

in order to derive a similarity transformation X-lBX = A such that A 
is almost diagonal with ( \Ej Ian 1 ess than a prescribed quantity, we shall, 

in general, have to work to higher precision if B is ill-conditioned than 

if it is well-conditioned. In the hermitian case the hypothesis does not 

have this deceptive feature. 

2. PATHOLOGICALLY CLOSE ROOT5 IN NONHERMITIAN CASE 

The deceptive nature of the result becomes apparent as soon as we 

consider the effect of very close roots. Assume now that A is nondefective 

and let X be a matrix having as its columns n independent eigenvectors 

of A. Then we have 

A = X diag(&)X-l. (33) 

Using a similar notation to that in Section 3 we have in the case of Y very 

close roots 

A = XD,X-l + XD,X-1 = B i_ C, (39) 

where B now has an r-fold root. In the hermitian case X is unitary and 

ijCjjF = 1jD,jj,, but now all we can say is 

I!C!/ G IIXII lIDal l/X-1ll, (40) 

and we see that the condition number K of X with respect to inversion is 

inevitably involved. It is clear that it is the minimum value of 1 IX/j 1 IX-ill 

for all permissible X that is relevant [l]. It should be emphasized, though, 

that the possession of a multiple root or of a set of very close roots does 

not imply that j]X/ 1 //X-l\/ is necessarily large. Provided the close roots 

are well conditioned the fact that the eigenvector problem is ill conditioned 

is irrelevant. 

Linear Algebra and Its Applications 1, I- 12 (1968) 



6. ITERATIVE REFINEMENT OF AN EIGENSYSTEM 

The above results have important consequences in connection with 

procedures for the refinement of a computed eigensystem of a matrix 

[12, 13, 151. In such procedures one starts with a computed set of eigen- 

values and eigenvectors ,u‘ and xi. Let X be the matrix having columns ,yi 

and define K and S by the relatiorr 

.4X ~ X diag(pu,) =- K, (41) 

X-i.lX - diag(,u;) = X-1R = S. (42) 

If the system were exact both R and S would be null. In practice 

neither R nor S can be computed exactly with the given X because of 

rounding errors but with well-designed procedures an .q is determined 

with a low relative error. Hence we have 

S ‘A .Y = diag(,u;) + .‘ f (S - .q). (13) 

If the computed system is accurate .? is small, and with good procedures 

for calculating R and X-lR a bound is obtained for 11.5’ ~ .qi/ which is 

small compared with 1IS[I. (Note S IS computed explicitly but a bound 

for the norm only is determined for S - S.) The matrix sum on the right 

of (43) is therefore an almost diagonal matrix which is exactly similar 

to A. 

Now when A has a multiple root corresponding to a linear divisor our 

result shows that provided s is small (and hence S - 5 is very small), 

the off-diagonal elements of 9 associated with the multiple roots will be 

far smaller than the largest off-diagonal elements of 5. When none of the 

roots of A is ill conditioned we shall find typically that if /IsI/, = E 

then the bound for j/S - s/j, will be approximately 2-% (with a t-digit 

mantissa binary computer). The diagonal elements of diag&) + s 

associated with the multiple roots will differ by quantities of the order 

of &2 and the associated off-diagonal elements will be of order e2. 

Hence after suitable permutations of rows and columns the right-hand 

side of (43) will have the form 

Linear .4lgebra and Iis Applicalions 1, 1 - 12 (196X) 
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and the bound for 1 (s - S[ / WI ‘11 usually be of order at least as small as $. 

Premultiplication of the first Y rows by ke and the first r columns by (l/k)& 

then modifies the second matrix to the form 

EEL WM 

I I ;Ar EP (45) 

and because of this Gerschgorin’s theorem gives just as fine bounds for 

multiple roots as for well-separated roots. 

Forgetting rounding errors for the moment it is interesting to consider 

what can be achieved with an approximate matrix X of eigenvectors 

which can be expressed in the form 

Z = X(1 + EE), (46) 

where &?Zl[m = 1 and X is a matrix of exact normalized eigenvectors. 

We have 

X-rAx = (1 + &E)-‘X-r/fX(I + EE) 

= (I - FE + ,s2E2 - . * a) diag(&)(I + EE) 

= dia.&A,) + EF + terms in .9, etc., (47) 

where 

fij = - Ajeij + ilieLj. (48) 

We see that the elements fij are zero whenever Ai = A,. Hence the off- 

diagonal elements associated with multiple eigenvalues are of order 3. 

Notice that when A has eigenvalues which, while not being truly 

coincident, have separations which are appreciably smaller than E, (48) 

shows that the associated off-diagonal elements are again appreciably 

smaller than E and a simple application of Gerschgorin’s theorem using 

diagonal similarity transformations gives bounds for the relevant eigen- 

values which are of the order of e2 or of the separations, whichever is the 

larger. The weakest bounds arise when the separations are themselves 

of order E. The bounds are then of order E and cannot be improved merely 

by diagonal similarity transformations. 

When the procedure for refining an eigensystem is used iteratively, 

then provided the system is not too ill conditioned the final eigensystem 

Linear Algebra and Its Af$&ations 1, l- 12 (1968) 
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is “correct to working accuracy.” Generally we can assume that the final 

computed system of vectors satisfies a relation of the form 

X=_X+E where liE!jm < fi.2-‘JJX/I,. (4% 

Hence we have 

X-ijfX = (X-i - X-iEX-i - . . .)AX(I + X’-1E) 

= diag(&) - X-lE diag(&) + diag(&)X-lE + . . . (50) 

Equation (50) shows the real limitation on the attainable accuracy with 

computation of a prescribed precision. The off-diagonal elements of 

X-lAX are certainly bounded by 2n. 2-‘~~X~~,~~X-1~~, maxjA,l, if we 

ignore the quadratic and higher-order terms in E. Writing 

2%. 2-1j[Xj/,I(X-11j, max(Aij = fi, (51) 

the bounds attainable for the eigenvalues using Gerschgorin’s theorem 

and diagonal transformations can be expressed in the following form. 

Let the eigenvalues be divided into three groups. The first group 

consists of multiple eigenvalues; the second group consists of eigenvalues 

with a minimum separation which is less than p, and the third group 

consists of the remainder. For an eigenvalue in the first group having 

a minimum separation of 6, from all other eigenvalues the bound is of the 

order of fiz/S,. For a member of the second group having separations of 

216 to s from its close neighbors and a minimum separation of order S, 

from all others the bound is of the order of s + (/P/S,). For a member 

of the third group having a minimum separation from all other eigenvalues 

of 6, the bound is of the order of /P/S,. In general unless ) (XI jm / IX-l/ Jm 

is quite large the bounds are all appreciably better than 2-t maxIAil 

except when s is of the order of magnitude of p. 

This result has been amply confirmed in practice-multiple eigenvalues 

being found, in general, to the same high precision as well-separated eigen- 

values. 
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